JEFFERSON COLLEGE
COURSE SYLLABUS

RAD160
Radiographic Physics
3 Credit Hours

Revised by: Janet E. Akers BS RT (R)(M)
Date: October 3, 2013

Kenny Wilson, Director, Health Occupation Programs Dena McCaffrey, Dean, Career & Technical Education
RAD160 Radiographic Physics

I. CATALOGUE DESCRIPTION

A. Prerequisites: Acceptance to Radiologic Technology Program, and reading proficiency.

B. Credit hour award: 3

C. Description: This course provides the student with the principles of x-ray generation and use, including the mathematical, electrical, chemical, and physical concepts necessary for x-ray production and beam characteristics. An introduction to the x-ray equipment, instrumentation and control, and the unit of measure is provided. An analysis of production and measurement of radiation, interaction with matter and film, the study of x-ray tubes, rating charts, and x-ray circuits will be presented. (F)

II. EXPECTED LEARNING OUTCOMES/CORRESPONDING ASSESSMENT MEASURES

<table>
<thead>
<tr>
<th>Expected Learning Outcomes</th>
<th>Assessment Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the general principles of the Law of Conservation of Energy.</td>
<td>Class Discussion/Activity</td>
</tr>
<tr>
<td></td>
<td>Written Examinations</td>
</tr>
<tr>
<td></td>
<td>Written Assignments</td>
</tr>
<tr>
<td>Integrate the Bohr’s model of atomic structure with the chemical characteristics of a molecule.</td>
<td>Class Discussion/Activity</td>
</tr>
<tr>
<td></td>
<td>Written Examinations</td>
</tr>
<tr>
<td></td>
<td>Written Assignments</td>
</tr>
<tr>
<td>Integrate the principles and application of electrostatics, magnetism and electrodynamics.</td>
<td>Class Discussion/Activity</td>
</tr>
<tr>
<td></td>
<td>Written Examinations</td>
</tr>
<tr>
<td></td>
<td>Written Assignments</td>
</tr>
<tr>
<td>Compare single phase, three phase and high frequency generators in terms of radiation production and efficiency.</td>
<td>Class Discussion/Activity</td>
</tr>
<tr>
<td></td>
<td>Written Examinations</td>
</tr>
<tr>
<td></td>
<td>Written Assignments</td>
</tr>
<tr>
<td>Assess the design characteristics of the radiographic tube, housing and circuitry.</td>
<td>Class Discussion/Activity</td>
</tr>
<tr>
<td></td>
<td>Written Examinations</td>
</tr>
<tr>
<td></td>
<td>Written Assignments</td>
</tr>
<tr>
<td>Distinguish between photon and electron interactions with matter.</td>
<td>Class Discussion/Activity</td>
</tr>
<tr>
<td></td>
<td>Written Examinations</td>
</tr>
<tr>
<td></td>
<td>Written Assignments</td>
</tr>
</tbody>
</table>

III. OUTLINE OF TOPICS

A. Energy
 1. Physical Concepts of Energy
i. Force
ii. Work (force \times distance)
iii. Potential Energy
iv. Kinetic Energy

2. Law of Conservation of Energy
 i. Energy Levels
 ii. Forms of Energy
 iii. Transformation of Energy
 iv. E=mc^2

B. Structure of Matter
1. Subdivisions of Matter
 i. Mixture
 ii. Elements
 iii. Compounds
 iv. Atoms
 v. Molecules
2. Atomic Structures
 i. Electrons
 ii. Protons
 iii. Neutrons
3. The Elements
 i. Atomic and Mass Numbers
 ii. Isotopes
 iii. Periodic Table
 iv. Valence Number
4. Compound Bonding
 i. Ionic Bonds
 ii. Covalent Bonds
5. Ionization

C. Electrostatics
1. Electrification
 i. Positive and Negative Charges
 ii. Methods of Electrification
 iii. Conductors, Insulators and Semiconductors
2. Law of Electrostatics
3. Electroscope
4. Static Discharge

D. Electrodynamics – Direct Current Electricity
1. Sources of Electric Current
 i. Batteries – Cell
 ii. Generator – Dynamo
2. D.C. Circuits
 i. Potential Difference – Voltage
 ii. Current
 iii. Resistance
 iv. Ohm’s Law
 v. Components of a Basic Circuit
 vi. Ammeters and Voltmeters
 vii. Series Circuits
viii. Parallel Circuits
3. Electric Capacitor
4. Work and Power of a Direct Current Circuit

E. Magnetism
1. Classification of Magnets
 i. Natural magnets
 ii. Artificial Permanent Magnets
 iii. Electromagnets
2. Nature of Magnetism
 i. Laws of Magnetism
 ii. Magnetic domains
 iii. Magnetic Fields
 iv. Lines of Force
 v. Detection of Magnetism
3. Magnetic Classification of Matter
 i. Permeability
 ii. Retentivity
 iii. Ferromagnetic Materials
 iv. Paramagnetic Materials
 v. Nonmagnetic Materials
 vi. Diamagnetic Materials

F. Electromagnetism
1. Electromagnetism
 i. Phenomena – Hans Oersted and Davy
 ii. Solenoid
 iii. Electromagnet
 iv. Left Thumb Rule
2. Electromagnetic Induction
 i. Factors Affecting EMF (electromagnetic fields) Induction
 ii. Left Hand Rule
3. Self-Induction
 i. Counter – EMF
 ii. DC (direct current) Circuits
 iii. AC (alternating current) Circuits

G. Generators, Motors and Alternating Current
1. Electric Generator
 i. Construction
 ii. Generation of Current
2. Alternating Current
 i. Sine Curve
 ii. Root Mean Square
 iii. Ohm’s Law for AC Circuits
 iv. Advantages of AC
3. Electric Motor
 i. Motor Principle
 ii. Right Hand Rule
 iii. Synchronous Motors
 iv. Induction Motor
 v. Current Measuring Devices
1. Galvanometer
2. Electrodynamometer

H. Production and Control of High Voltage – Current Regulations
1. Transformers
 i. Mutual Induction
 ii. Transformer Law
 iii. Construction
 1. Step up, Step down, Isolation
 2. Air core, Open core, Closed core, Shell
 iv. Transformer Efficiency
 1. Efficiency Formula
 2. Power Losses

2. Auto Transformers
3. Control of Filament and Tube Current
 i. Choke Coil
 ii. Rheostat
 iii. Saturable Reactor

I. Rectification AC to DC
1. Methods
 i. Self-Rectification
 ii. Half Wave
 iii. Full Wave
 iv. Three Phase Rectification
2. Types of Rectifiers
 i. Vacuum Tube (Valve Tube)
 ii. Solid State Diode Rectification
3. Spinning Top Test
 i. Full wave Rectification
 ii. Timer Accuracy
 iii. Three Phase Rectification

J. X-Rays
1. Discovery
2. Electromagnetic Spectrum
 i. Frequency – Wavelength Relationship
 ii. Cosmic, Gamma, X, UV, Visible Light, IR rays
 iii. Quantum Theory – Photons
3. X-Ray Tube
 i. Component Parts
 ii. Crookes Tube
 iii. Coolidge Tube
4. X-Ray Production
 i. Conditions Necessary for Production
 ii. Electron Interactions
 1. Brems Radiation
 2. Characteristic Radiation
 iii. Target material
 iv. Efficiency of X-Ray Production
K. Property of X-Rays
L. X-Ray Beam Specifications
 1. Exposure (Quantity)
 2. Tube Current (mA)
 3. Tube Potential (kVp)
 4. Distance
 5. Filtration
 6. Quality
 7. Energy
 i. $E = hv$
 ii. Polyenergetic
 iii. Lambda Minimum
 8. Half Value Layer
 9. Spectral Distribution Curves
M. Interactions of X-Rays with Matter
 1. Attenuation – Absorption, Scatter, Distance
 2. Photon Energy
 3. Energy Levels and Electron Shells
 4. Photon Interactions
 i. Coherent (Unmodified) Scatter
 ii. Compton (Modifies) Scatter
 iii. Pair Production
 iv. Relative Importance of Various Interactions
N. X-Ray Dosimetry
 1. Linear Energy Transfer (LET)
 2. Exposure – Roentgen – R
 3. Absorbed Dose – Rad
O. X-Ray Tubes and Rectifiers
 1. Radiographic Tubes
 i. Cathode Assembly
 ii. Filament Thinning
 iii. Space Charge Compensation
 iv. Stationary Anodes
 v. Rotating Anodes
 vi. Anode Angle
 2. Factors Governing Tube Life
 i. Filament Factors
 ii. Anode Factors
 iii. Tube Charts
 1. Tube Rating Charts
 2. Cooling Curves
 3. Heat Units
P. X-Ray Circuits
 1. Equipment Design
 i. Source of Electricity – Line Voltage
 ii. Primary Circuit – Switch, Fuses, Line Voltage
 Compensator
 iii. Secondary Circuit – Step-up Transformer, mA Meter,
 Rectifiers, High Voltage Cable, X-ray Tube
iv. **Timing Devices**
 1. Mechanical Timers
 2. Synchronous Timers
 3. Old Electronic Impulse Timers
 4. Modern Electronic Timers
 5. mAs Timers
 6. Automatic Exposure Control
 a. Phototiming
 b. Ionization Chamber
v. **Filament Circuit**
vi. **Control Panel**
 2. Three Phase Generation of X-rays
 3. High Frequency Generators
 4. Mobile X-Ray Equipment
 i. Rechargeable Battery Powered
 ii. Capacitor Discharge Units
 1. Wave-tail Cutoff
 2. Grid Controlled Triodes
 iii. AC Wall Outlet Powered

IV. **METHOD(S) OF INSTRUCTION**

This course is taught using a variety of instructional methods, which include but are not limited to interactive lectures, computer presentations, group activities and exercises, videos, supplemental handouts and student presentations. Students are expected to be **ACTIVE** participants in the learning process. Students are expected to read the assigned readings prior to scheduled class meetings and come to class prepared to actively participate in all activities.

V. **REQUIRED TEXTBOOK(S)**

SUPPLEMENTAL TEXTBOOKS

VI. **REQUIRED MATERIALS**

A. A computer with internet access and basic software to include Word and Power Point (available through Jefferson College labs)
B. Course homepage available through Blackboard
C. Binder, paper, pens, pencils with erasers, highlighters
VII. SUPPLEMENTAL REFERENCES

A. Class Handouts
B. Library Resources
 1. Textbooks
 2. Periodicals
 3. Films On Demand Videos
C. Internet Resources
 1. On-line references
 2. Textbook companion website

VIII. METHOD OF EVALUATION (basis for determining course grade)

GRADES – Grades will be based on the percentage of total points earned out of total points possible for this semester. The assignments will vary in the number of possible points based upon amount of work involved and complexity of material. The student should be aware that proofreading and revision are extremely important when preparing homework. A final semester grade of 80% or above must be achieved in this course to successfully complete this course.

EXAMS – All exams with scores less than 75% must be retaken until a score of 75% or above is achieved to complete course requirements. The original score will be used to figure the semester grade. The student will be allowed to retake an exam a maximum of two times. If the student has not passed an exam within the three designated attempts, the student will present to the review board and may be dismissed from the program. The student must contact the instructor prior to any absence to make arrangements for retesting. Until course requirements are met, the final grade will be an incomplete.

If an exam is not taken at the scheduled time and arrangements for a make-up exam have not been made prior to the designated exam time, the grade for that exam will be zero. No make-up exam will be considered unless the instructor is personally notified prior to the absence. If a student arranges to take the exam at other than the scheduled time, 5% will be deducted from the grade on that exam. Make-up exams are scheduled at the convenience of the instructor.

Student’s grade will also be based on participation in class and attendance.

ASSIGNMENTS – In order to be prepared for each class meeting, the student should complete each homework assignment prior to the following class meeting. Assignments will consist of worksheets, textbook reading, review questions and other activities to enhance the learning experience.

Evaluation tools will include research projects, written and oral communication projects, class attendance/participation, homework assignments, and exams.

All assignments must be typewritten and are due at the beginning of class on the
assigned due dates. Late assignments will not be accepted. In-class quizzes and assignments cannot be made up.

Grading Scale: *(Jefferson College Radiologic Technology Program’s)*

- A= 100-92%
- B= 91.9-86%
- C= 85.9-80%
- D= 79.9-70%
- F= 69.9 and below
- I= Incomplete
- W= Excused withdrawal from course

IX. ADA AA STATEMENT

Any student requiring special accommodations should inform the instructor and the Coordinator of Disability Support Services (Library; phone 636-481-3169).

X. ACADEMIC HONESTY STATEMENT

All students are responsible for complying with campus policies as stated in the Student Handbook (see College website, http://www.jeffco.edu).

XI. ATTENDANCE STATEMENT

Students earn their financial aid by regularly attending and actively participating in their coursework. If a student does not actively participate, he/she may have to return financial aid funds. Consult the College Catalog or a Student Financial Services representative for more details. Student’s grade will also be based on participation in class and attendance.

XII. OUTSIDE OF CLASS ACADEMICALLY-RELATED ACTIVITIES

The US Department of Education mandates that students be made aware of expectations regarding coursework to be completed outside the classroom. Students are expected to spend substantial time outside of class meetings engaging in academically-related activities such as reading, studying, and completing assignments. Specifically, time spent on academically-related activities outside of class combined with time spent in class meetings is expected to be a minimum of 37.5 hours over the duration of the term for each credit hour.