JEFFERSON COLLEGE

COURSE SYLLABUS

HRA130

SOLAR HOT WATER SYSTEMS

2 Credit Hours

Prepared by: William Kaune
September 25, 2013

Revised by: William Kaune
October 21, 2015

Chris DeGeare, M.Ed., Division Chair, Business and Technical Education
Dena McCaffrey, Ed.D., Dean, Career & Technical Education
HRA130 Solar Hot Water Systems

I. CATALOGUE DESCRIPTION

A. Pre-requisite: Reading Proficiency

B. 2 Credit Hour Award

C. Solar Hot Water Systems will expose students to solar hot water theory designs and installation through hands-on projects, experiments, and theory. (F,S)

II. EXPECTED LEARNING OUTCOMES/CORRESPONDING ASSESSMENT MEASURES

<table>
<thead>
<tr>
<th>Describe solar hot water theory</th>
<th>Quizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exams</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differentiate between different solar designs</th>
<th>Quizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exams</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design solar systems and measure their efficiencies</th>
<th>Quizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exams</td>
</tr>
<tr>
<td></td>
<td>Homework</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practice solar principles by experimentation with solar trainer</th>
<th>Lab Exercises</th>
</tr>
</thead>
</table>

III. OUTLINE OF TOPICS

A. Solar Site Assessments
 1. Areas of feasibility
 2. Solar path finders
 3. Site assessments for three
 4. Heat flow and storage
 5. Cost assessments
 6. Rebates and incentives

B. Components
 1. Collectors
 2. Tanks
 3. Plumbing
 4. Controls

C. System Design
 1. Drain back systems
 2. Drain back tanks
 3. Drain back system design
 4. Drain back pumping
5. Transfer fluids
6. Controls
7. Piping

D. Closed Loop Glycol Systems
 1. Design closed loops systems
 2. Installation of closed loop systems
 3. Over heat protection
 4. Heat dumps
 5. Steam back design

E. Thermosiphon Systems
 1. Freeze protection
 2. Tank locations
 3. Piping

F. Solar Pool Heating
 1. Pool heat losses
 2. System design
 3. Piping
 4. Collectors

G. Solar Loop Design
 1. Hot Day – no loads
 2. Control requirements
 3. Cold Day – drain back requirements

H. Load Integration
 1. Tank sizing
 2. Preheating
 3. Dip tube options
 4. Parallel tanks
 5. Large storage recirculation
 6. Space heat integration
 7. Piping requirements
 8. Combination system design
 9. Coil designs
10. Collector designs
11. Flat plate
12. Evacuated tubes
13. Concentrating collectors
14. Snow and wind loads
15. Collector performance and ratings

I. Tanks
 1. Tank characteristics
2. Anode and Galvanic Corrosion
3. Heat stratification in tanks
4. Tank sizing

J. Heat Exchanges
1. Types of heat exchangers
2. Drain back tanks
3. External heat exchangers
4. Counter flow heat exchangers
5. Proper sizing
6. 10% approach method
7. Double wall heat exchangers

K. Pumps and Fluids
1. Centrifugal pumps
 a) Multi and variable speed
 b) AC/DC
 c) Mounting
2. Cavitation
3. Head pressure and friction loss
4. Safety margins
5. Propylene glycol mixtures
6. Propylene glycol alternatives

L. Plumbing
1. Copper
 a) Type L
 b) Type M
2. Flexible stainless steal
3. Pex
4. PVC
5. Insulation
6. Different flow rates

M. Roofing
1. Safety considerations
2. OSHA regulations
3. Fall protection
4. Ladders
5. Cranes
6. Array layout
7. Mounting options
 a) Flush
 b) Tilt
 c) Free standing
8. Roof attachments
9. Rafters
10. Connectors
11. Penetrations
12. Loads
 a) Weight
 b) Wind
13. Ground mounting

N. Controllers and Sensors
 1. Electrical considerations
 a) Voltage
 b) Wire sizing
 c) Safety devices
 2. Analog controls
 3. Differential controls
 4. Digital controls
 5. Proper settings

O. Simulations and Monitoring
 1. Programs
 2. Solar path finder
 3. Reports and comparisons
 4. Performance monitoring
 5. Solar and web based

IV. METHOD(S) OF INSTRUCTION
 A. Lecture
 B. Lab
 C. Videos
 D. PowerPoints

V. REQUIRED TEXTBOOK(S)

VI. REQUIRED MATERIALS
 None

VII. SUPPLEMENTAL REFERENCES
 Handouts
VIII. METHOD OF EVALUATION
A. Exams 40%
B. Labs 30%
C. Quizzes 10%
D. Homework 10%
E. Attendance 10%

IX. ADA AA STATEMENT
Any student requiring special accommodations should inform the instructor and the Coordinator of Disability Support Services (Technology Center 101; phone 636-481-3169).

X. ACADEMIC HONESTY STATEMENT
All students are responsible for complying with campus policies as stated in the Student Handbook (see College website, http://www.jeffco.edu).

XI. ATTENDANCE STATEMENT
Regular and punctual attendance is expected of all students. Any one of these four options may result in the student being removed from the class and an administrative withdrawal being processed: (1) Student fails to begin class; (2) Student ceases participation for at least two consecutive weeks; (3) Student misses 15 percent or more of the coursework; and/or (4) Student misses 15 percent or more of the course as defined by the instructor. Students earn their financial aid by regularly attending and actively participating in their coursework. If a student does not actively participate, he/she may have to return financial aid funds. Consult the College Catalog or a Student Financial Services representative for more details.

XII. OUTSIDE OF CLASS ACADEMICALLY RELATED ACTIVITIES
The U.S. Department of Education mandates that students be made aware of expectations regarding coursework to be completed outside the classroom. Students are expected to spend substantial time outside of class meetings engaging in academically related activities such as reading, studying, and completing assignments. Specifically, time spent on academically related activities outside of class combined with time spent in class meetings is expected to be a minimum of 37.5 hours over the duration of the term for each credit hour.